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a b s t r a c t

Active safety systems which assess highly dynamic traffic situations including pedestrians
are required with growing demands in autonomous driving and Connected Vehicles. In this
paper, we focus on one of the most hazardous traffic situations: the possible collision
between a pedestrian and a turning vehicle at signalized intersections. This paper presents
a probabilistic model of pedestrian behavior to signalized crosswalks. In order to model the
behavior of pedestrian, we take not only pedestrian physical states but also contextual
information into account. We propose a model based on the Dynamic Bayesian Network
which integrates relationships among the intersection context information and the pedes-
trian behavior in the same way as a human. The particle filter is used to estimate the pedes-
trian states, including position, crossing decision and motion type. Experimental evaluation
using real traffic data shows that this model is able to recognize the pedestrian crossing
decision in a few seconds from the traffic signal and pedestrian position information.
This information is assumed to be obtained with the development of Connected Vehicle.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Autonomous driving and connected vehicles are expected to significantly improve traffic safety and convenience by alle-
viating the burden of a driver. Currently, they are implemented as a form of an advanced driver assistance system (ADAS) to
partially aid drivers. It is also expected that fully autonomous and connected vehicles will emerge as the key component of
intelligent transportation systems, replacing human drivers in the near future.

Accidents involving pedestrians are one of the leading causes of death and injury around the world. On the other hand,
there is no doubt that the reduction of these accidents should be considered in the development of autonomous driving and
connected vehicle. Pedestrian detection has been an active research area and significant progress has been reported over the
last two decades (Enzweiler and Gavrila, 2009; Dollar et al., 2012; Dalal and Triggs, 2005; Felzenszwalb et al., 2010; Llorca
et al., 2012; Alahi et al., 2014). In addition, the classification of the type of road users was proposed by Zangenehpour et al.
(2015). However, the detection and classification are not sufficient to direct the operation of vehicle in driving, especially in
crowded urban areas. The reason is that many pedestrians appear around a vehicle, and the frequent detection of pedestrians
makes the vehicle brake or be at a stop. In order to reduce traffic accidents as well as smooth the driving task, more advanced
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collision avoidance systems are required not only to detect pedestrians around vehicles, but also to understand and predict
the behavior of pedestrians. For this purpose, many researchers have worked on pedestrian path prediction and motion clas-
sification in the last few years.

A popular choice for target state estimation is the Kalman filter (KF). Pedestrian position, velocity, acceleration can be
estimated with appropriate dynamical models and measurement models. Generally, the KF is based on the assumption that
pedestrian dynamics approximates a linear dynamical system (LDS), which represents that a pedestrian walks at a constant-
velocity and it is formulated as a linear operation. The KF can further be used for prediction by propagating the current state
with the dynamical model. The KF was proposed to track pedestrian in image space (Binelli et al., 2005), ground plane
(Bertozzi et al., 2004) and 3D space (Alonso et al., 2007). Moreover, various derivative versions of KF, such as extended KF
(EKF) and unscented KF (UKF) have been applied for pedestrian tracking as well (Meuter et al., 2008; Junli and Reinhard,
2012). Trajectory provides significant information for state prediction, such as position and velocity. However, pedestrians
can instantly change their walking direction, abruptly or start/stop walking. It is not sufficient to assume a single dynamical
system for the pedestrian movement. Schneider and Gavrila (2013) proposed a more flexible system, which is composed of
multiple linear dynamical models. The multiple models were used to distinguish the different motions of pedestrian, such as
walking, stopping, bending in and starting.

Since the pedestrian behavior has highly dynamic property, motion changes indicate the crucial information from the
view of traffic safety. The motion changes appear on the posture of pedestrian, which can be observed by considering the
visual feature in image space. Koehler et al. (2013) proposed to detect pedestrian’s initiation of gait using Motion History
Image. Keller and Gavrila (2014) applied dense optical flow to two different models to judge whether the pedestrian
approaching the curb will cross in front of the ego-vehicle or stop at the curbside. One model is a Gaussian Process Dynam-
ical Models (GPDM) (Wang et al., 2008) trained with walking and stopping motion separately. The other model adopts prob-
abilistic hierarchical trajectory matching, which matches the trajectory of the feature vector with database classified by
motion types. While they employed 2-dimensional features which are vulnerable to ego-motion or change of the observing
direction, Quintero et al. (2014a,b) used 3D body language to predict path and classify motions. They applied GPDM systems
trained with accurate motion capture data to the pose estimated from noisy disparity images.

Besides the pedestrians own intention, the surrounding environment also affects the behavior of pedestrians. Researchers
started to consider the contextual information for pedestrian behavior analysis. Kooij et al. (2014a) focused on the surround-
ing situations and enriched the impact factors, which cause physical motions of pedestrians. They assumed that the pedes-
trian decision whether to cross a road way or stop before crossing is influenced by three factors: existences of approaching
vehicles, the pedestrian awareness of them and the spatial layout of the environment. In addition, the authors employed the
Dynamical Bayesian Network (DBN) to model the relations among the behavior and those factors. Kooij et al. (2014b) also
proposed a method based on spatio-temporal context, which switches LDSs according to the pedestrian position from a vehi-
cle perspective. In contrast to the above-mentioned approaches, which aimed at short-time path prediction (�1 s), the
method proposed by Bonnin et al. (2014) realized an accurate/early detection for pedestrians’ crossing intention at a specific
location: zebra-crossing. The authors considered multiple contextual information, such as pedestrian moving direction and
distance to the zebra-crossings, to percept the intention of pedestrians. It is valid to take account of contextual information in
pedestrian behavior analysis, since pedestrians do not move randomly. Usually, they assess the traffic situations and have
intention or planning at the same time. From the view of whole intelligent transportation systems, the contextual informa-
tion also could be available, which can be provided by V2I or V2V communication.

Besides the context-based model proposed by Kooij et al. (2014a), there are many approaches making use of Bayesian
Network (BN) or its application to time-series data: DBN. They are applied to models of semantic traffic situations or human
behavior. Gindele et al. (2010) used a DBN to model the vehicle behavior. Integrating drivers’ intentions and interactions to
achieve the intentions, the proposed DBN estimates their behaviors and predicts their trajectories. Platho and Eggert (2012)
proposed to model the traffic situation of intersection using BNs. The complicated intersection scenarios were decomposed
into several sets of simple configurations. Each configuration contains an affecting and an affected entity such as a red traffic
signal and a stopping vehicle, respectively. Moreover, Patterson et al. (2003) proposed to use DBN model to recognize the
traveler’s transportation mode: ffoot; car; busg from noisy GPS data stream and additional knowledge, such as existences
of parking plots and bus stops.

Our work is highly inspired by Kooij et al. (2014a). We focus on a specific yet crucial scenario: the signalized intersections.
The pedestrian behavior at the intersections is highly related to the state of traffic signal, instead of distance between pedes-
trians and vehicles. In this paper, we propose to use DBN to model the pedestrian behavior at signalized intersections. The
proposed DBN probabilistically integrates relations among contexts, pedestrian intention, motion type and physical move-
ment in the way pedestrians actually behave. The model estimates the whole state of a pedestrian in the Bayesian filtering
framework. In addition, in the development of the model, we incorporated the traffic engineering knowledge (Iryo-Asano
et al., 2015). Moreover, we are aiming to estimate the pedestrian intention, because the intention controls pedestrian behav-
ior in a long period, which is the essential source of driving safety.

The remainder of the paper is organized as follows. In Section 2, we discuss pedestrian behavior at intersections as the
motivation and problem statement for this study. In Section 3, we present the details for the DBN-based pedestrian behavior
model including the filtering method. Experimental evaluation of the proposed system, including training data collection, is
described in Section 4. Finally, we conclude this paper and discuss future work in Section 5.
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2. Pedestrian behavior at intersections

As we discussed in Section 1, the pedestrian behavior has relationships with the surrounding environment and traffic sit-
uations. Especially at signalized intersections, the pedestrian crossing area and the timing for crossing are limited by the road
infrastructure and vehicles. Hamaoka et al. (2013) studied on the pedestrian confirmation behavior: head-turning for
approaching right/left-turning vehicles when they are crossing intersections. Iryo-Asano et al. (2015) and Zhang et al.
(2013) analyzed pedestrians’ decision-making and speed at signalized intersections. They proposed to employ probabilistic
distributions and considered the intersection layout and conditions surrounding pedestrian as influential factors. Zeng et al.
(2014) simulated pedestrian behavior at signalized intersections by considering the influence from turning vehicles, other
pedestrians and so on. Li (2013), Marisamynathan and Perumal (2014) and Koh and Wong (2014) analyzed pedestrian
behavior violating traffic signals at intersections.

In Japan, pedestrian signals have three phases: pedestrian green (PG), pedestrian flashing green (PFG) and pedestrian red
(PR). Pedestrians are allowed to cross during PG phase and are not allowed during PR phase. During PFG phase, pedestrians
are not allowed to start crossing. However, a lot of pedestrians start crossing after the onset of PFG in reality. In this case,
pedestrians usually accelerate and rush to cross the road. Those behaviors are very dangerous for turning vehicles. Therefore,
we choose the intersection scenario for research. In addition, though pedestrians are required crossing to or returning to the
nearer sidewalk if they already started crossing at the onset of PFG. However, they rarely return back to the side they start
crossing. Since we cannot obtain enough data of the return cases, we do not handle the behavior in this paper.

Actually, if we observe pedestrian behavior at signalized intersections, we can find tendencies of pedestrian behavior
according to signal states. For example, during PFG, pedestrian behaviors are typically categorized into two ways: speeding
up to cross and slowing down to stop. We show these tendencies in Fig. 1, which demonstrates the relation between the
distance to a crosswalk and the time relative to signal phases when pedestrians change their motion type. The data is gen-
erated by observing pedestrian behaviors at a real signalized intersection in Japan. It is also used to evaluate our model and
details are described in Section 4. The horizontal axis is the timing relative to the moment of onset of PFG. The negative value
means the time before onset of PFG. The vertical axis is the distance to the beginning edge of the crosswalk. The different
color of ‘‘�” symbol means different type of motion changing, e.g. the blue color is the changing from walking to standing.
Therefore, the left most green ‘‘�” symbol in Fig. 1 means a pedestrian changed his/her motion from running to walking,
when the PFG time is �22 s. At that moment, the distance from him/her to the beginning edge of the crosswalk was about
2 m. Obviously, there are three group of tendencies, which are indicated by different color ellipses. Firstly, the green ellipse
shows that when the pedestrian arrives in the 5 m range to the crosswalk and the signal phase is still PG, he/she can cross the
crosswalk with sufficient time. Therefore, pedestrians often change running to walking before the crosswalk. Secondly, when
the pedestrian signal begins to flash and a pedestrian is approaching the crosswalk, he/she often starts running in order to
cross during PFG. This tendency is demonstrated by the pink color ellipse. Thirdly, pedestrians who decide to wait for the
next PG stop at 2–6 m in front of the crosswalk edge (blue ellipse) when PFG time passed more than 5 s. The purpose of this
paper is to describe these tendencies as a probabilistic model.

There is a practical reason for choosing signalized intersections. A signalized intersection is one of the most hazardous
zones in traffic scenes. In fact, nearly half of the accidents between pedestrian and vehicle occurred at intersections in Japan
during the year 2015 (Metropolitan Police Department (Japan), 2015). It is because intersections are the main area where
Fig. 1. Illustration of pedestrian crossing behavior at a signalized intersection as a function of time and the distance to the edge of the crosswalk. The origin
of the time axis is set to the onset of PFG. Yellow/magenta lines (time = 0 s/10 s) represent the onset of PFG/PR, respectively. The distance to the crosswalk is
positive/negative value before/after a pedestrian enters the crosswalk, respectively.
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pedestrian and vehicle trajectories intersect. Moreover, though traffic signals control traffic flow so that pedestrians and
vehicles pass through safely, they frequently hurry up pedestrians as shown by the pink ellipse in Fig. 1. It causes hazardous
behavior such as rushing without attention to turning vehicles. In addition, there are wide blind spots on sidewalks for a left-
turning driver (in the case of left-hand traffic).

In this paper, we focus on the left-turning situation and near-side pedestrians as shown in Fig. 2. In left-hand traffic con-
text, near-side at an intersection is defined as the sidewalk which locates left side to a left-turning vehicle, and far-side is the
other road side. Left and right would be reversed for right-hand traffic. Far-side pedestrians firstly cross halfway before they
approach the vehicle and their crossing intention is not easy to be misjudged by a driver or the sensing system. On the con-
trary, the near-side pedestrians cross the road from the near-side sidewalk to the far-side. Therefore, the collision between a
left-turning vehicle and a near-side pedestrian happens in the beginning of pedestrian crossing. This dangerous area is close
to near-side sidewalk. In addition, because of a driver blind spot at the left-side, near-side pedestrians are easily caught in
hazardous situations. It is necessary for a driver to assess their crossing intentions. The targets of this research are the near-
side pedestrians who have intention to cross the crosswalk in front of an ego-vehicle as shown in Fig. 2.

Though we analyze the pedestrian behavior and develop the pedestrian model based on the data obtained in Japan, this
research could be significant for other countries or areas such as America (Iryo-Asano and Alhajyaseen, 2014), Singapore
(Koh et al., 2014) and Hong Kong (Lee and Lam, 2008), which have the similar traffic situations with PG and PFG, or indicators
similar to PFG. Especially in Asian countries, because of the large population, the density of pedestrians in one signal cycle is
high. Pedestrians could appear at any time during PG and PFG period like the case in Japan that is shown in this paper. Ana-
lyzing and developing the pedestrian behavior model for signalized intersections becomes crucial for Asian countries.
3. Probabilistic model of pedestrian crossing behavior

3.1. DBN overview

Our approach is to construct a pedestrian behavior model with the contexts in the intersection scenario by exploiting the
Dynamic Bayesian Network (DBN) (Murphy, 2002). First, the Bayesian Network (BN) is a stochastic model depicted as a
directed acyclic graph which consists of nodes and edges. Nodes denote random variables and can take both discrete and
continuous values. Edges denote conditional dependencies between nodes as relations of cause and effect. Even non-
linear or non-Gaussian can be assigned to them. A DBN is a sequential BN in which nodes can have relations with ones at
the adjacent network. This feature makes it possible to model time-series data and a DBN can be regarded as a dynamic sys-
tem of a Markov process of order one. These probabilistic approaches can take account of sensor noise and estimation con-
fidence. The hidden Markov model can be regarded as a specialization of DBN where unobservable nodes take only discrete
values. The Kalman filters can be also regarded as a solution for a specialization of DBN where nodes take continuous values
and edges are described with linear operators and Gaussian noise. Because of these flexibilities, DBNs are often used for
context-based human behavior models as mentioned in Section 1.

Regarding a DBN as a dynamical system, the Bayesian filtering is employed to estimate its states. The Bayesian filter
recursively estimates the posterior probability of the system state xt conditioned on the all obtained observations o1:t . Every
Fig. 2. Definitions of near-/far-side and state variables in our target scenario.
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time step, the prior Pðxt jo1:t�1Þ is predicted using the posterior at the previous time step Pðxt�1jo1:t�1Þ and the state transition
model Pðxt jxt�1Þ on the assumption of a Markov process of order one. This is achieved by marginalizing out the previous
states.
Pðxt jo1:t�1Þ ¼
Z

Pðxt jxt�1ÞPðxt�1jo1:t�1Þdxt�1 ð1Þ
When a observation ot becomes available, the posterior Pðxt jo1:tÞ is estimated by correcting the prior with observation
likelihood PðotjxtÞ. Based on Bayes’ rule, the update formulation is represented as follow:
Pðxt jo1:tÞ ¼ Pðot jxtÞPðxt jo1:t�1Þ
Pðotjo1:t�1Þ

/ Pðot jxtÞ
Z

Pðxt jxt�1ÞPðxt�1jo1:t�1Þdxt�1

ð2Þ
In this framework, how to define the state transition model is the key of the filtering performance.

3.2. DBN description

The random variables we consider as state space of the proposed DBN are defined as follows:

S: Traffic signal phases for pedestrians. In Japan, there are three phases for pedestrian:
St 2 fPG; PFG; PRg ð3Þ

Each value corresponds to pedestrian green/flashing green/red respectively. In this study, we assume that the true signal
phase at each time step can be obtained from V2I communication on the assumption of connected vehicles.

D: Pedestrian decisions to cross the crosswalk or wait until next PG.
Dt 2 fcross;waitg ð4Þ

We regard this state significant because pedestrian movement follows it. Namely, if a pedestrian decides to cross, he/she will
keep moving at least until he/she crosses completely. In this case, a driver or a vehicle system must keep an eye on him/her.
Otherwise, he/she stops before he/she enters a roadway and it does not cause any hazardous situations. Knowing this state is
helpful to a driver or vehicle system in decisions-makings.

M: Pedestrian motion types.
Mt 2 fstanding;walking; runningg ð5Þ

Running is defined as the moving motion that there are moments when both feet are above the ground, while walking is that
one foot is always on the ground. Though running can be divided into detail motion types, jogging, rushing, etc., all these
types including walking varies continuously and can be assumed to be a same dynamical system such as constant-
velocity model. However, it is important to consider these fundamental motion types separately because they imply pedes-
trian intentions. For example, running usually accompanies hasty feeling and a running pedestrian definitely has a crossing
intention.

Sp: Pedestrian moving speed.
Dr: Pedestrian moving direction.
P: Pedestrian position on the ground plane.
Pt ¼
xt
yt

� �
ð6Þ
Note that for Dr and P, the near-side edge line of a crosswalk serves as a reference of the coordinate system as shown in Fig. 2
since we assume pedestrians determine their behavior according to the relative positional relation between them and cross-
walks. We denote the distance from a pedestrian to a crosswalk as LðPÞ, which represents the minimum length between the
position P and the near-side edge line segment of the crosswalk, and positive/negative value before/after stepping over the
edge line. As also shown in Fig. 2, there is usually a lane for cyclists at the side of a crosswalk for pedestrians in Japan. How-
ever, we regard it as a part of a crosswalk as pedestrians actually do.

Z: Observation of pedestrian position on the same coordinate system as P.
Zt ¼
zxt
zyt

� �
ð7Þ
In this state space, we construct a model in accordance with the flow of pedestrian behavior. First, a pedestrian assesses
the situation. The situation corresponds to the signal phase and the positional relation to crosswalks in this model. According
to the situation, he/she makes decisions of movement. This corresponds to the cross/wait decision and change of motion
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types. Then, he/she moves physically based on the decision and motion. The graphical representation of the proposed DBN is
shown in Fig. 3. From this representation, we can decompose the state transition model of the DBN as follows:
Fig. 3.
rectang
PðDt ;Mt; Spt;Drt; Pt jDt�1;Mt�1; Spt�1;Drt�1; Pt�1; St�1; StÞ ¼ PðDt jDt�1; St�1; St; Pt�1ÞPðMtjMt�1; St ;Dt ; Pt�1Þ
� PðSpt;Drt ; Pt jSpt�1;Drt�1; Pt�1; St;Dt ;MtÞ ð8Þ
3.3. Filtering models

Each term of the decomposed state transition model (8) represents how each state variable changes probabilistically from
the previous time. Using these models, the proposed system filters out improbable states from the huge state space and esti-
mates the true states. We define the subdivided models as follows. In addition to the transition model, we define an obser-
vation likelihood model which is also exploited in the filtering process.
3.3.1. Cross-wait decision-making model
For the pedestrian decision-making model, we assume the following rules:

(a) During PG, pedestrians only have cross decisions.
(b) At the onset of PFG, pedestrians make decisions to cross or wait.
(c) During PFG and PR, pedestrians change their decisions at low probabilities.

For the second rule, we follow the model previously proposed (Iryo-Asano et al., 2015). The probability of the wait deci-
sion is determined with a logistic function. These rules are formulated as follows:
PðDt ¼ waitjPt�1 ¼ pt�1; St�1 ¼ st�1; St ¼ st;Dt�1 ¼ dt�1Þ

¼

ðaÞ 0 ðst ¼ PGÞ
ðbÞ expðVdðpt�1ÞÞ

1þexpðVdðpt�1ÞÞ ðst�1 ¼ PG; st ¼ PFGÞ

ðcÞ 1� qw!c ðdt�1 ¼ waitÞ
qc!w ðdt�1 ¼ crossÞ

�
ðotherwiseÞ

8>>>><>>>>:
ð9Þ
PðDt ¼ crossÞ ¼ 1� PðDt ¼ waitÞ ð10Þ
Vd is a linear function of influential factors. We currently consider only the distance to the crosswalk at the previous time as
an explanatory variable:
Vdðpt�1Þ ¼ a0 þ a1Lðpt�1Þ ð11Þ

This analyzing method called logistic regression is also used for human decision-making models in traffic scenes such as

driver/pedestrian gap acceptance model (Rakha et al., 2011; Marisamynathan and Perumal, 2014). Other influential factors
such as the crosswalk length considered in the previous model (Iryo-Asano et al., 2015) should be added to the explanatory
variables according to the information which can be observed or obtained. However, since we suppose that a pedestrian
Spt-1

Dt-1

Mt-1

Pt-1

Drt-1

Zt-1

St-1 Decision

Signal

Speed

Motion

Position

Observation

Direction

Dt

Mt

Zt

Spt
Drt

Pt

St

Two-sliced DBN model of the proposed pedestrian behavior model in a graphical representation. Discrete/continuous/obtained nodes are drawn as
ular/circular/shaded respectively. Intra-temporal/inter-temporal causal edges are solid/dashed respectively.
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determines his/her moving speed according to his/her decision and other contexts as we mention in Section 3.3.3, the speed
should not be considered here as the explanatory variable. The parameters a0; a1 are determined by the maximum likeli-
hood estimation.

The parameters qw!c; qc!w are the probabilities that a pedestrian switches the decision from wait to cross/from cross to
wait at a moment, respectively.

3.3.2. Motion transition model
Pedestrians may change their motion at any time. Therefore, we assume that pedestrians make decisions about a motion

change at every time step. The probabilities of the motion changes are defined by the logistic regression in a similar way to
the cross/wait decision-making model.
PðMt jMt�1 ¼ mt�1; St ¼ st;Dt ¼ dt ; Pt�1 ¼ pt�1Þ ¼
expðVmðst ;dt ;mt�1;Mt ;pt�1Þ

1þ expðVmðst ;dt ;mt�1;Mt ;pt�1ÞÞ
ð12Þ

ðwhere Mt –mt�1Þ

We also consider only the distance to the crosswalk at the previous time as an explanatory variable. However, this linear

function has different constants and coefficients on every combination of the other conditional variables: St ; Dt ; Mt�1.
Vmðst; dt;mt�1;mt ;pt�1Þ ¼ b0;st ;dt ;mt�1 ;mt þ b1;st ;dt ;mt�1 ;mt Lðpt�1Þ ð13Þ

For example, b0;PFG;cross;running;walking is a different value from b0;PG;cross;running;walking . This means that a pedestrian determines

his/her next motion type according to the contexts: the signal phase, decision, present motion type and positional relation
to the crosswalk. The parameters are determined by the maximum likelihood estimation.

Eq. (12) defines only the probabilities that a pedestrian switches his/her motion type to another. The probability of stay-
ing the same motion type is the remaining one. For example, when a pedestrian is walking at the previous time step, the
probability that he/she will keep walking is determined as follows (the other conditional variables St ; Dt ; Pt�1 are omitted
for simplification):
PðMt ¼ walkingjMt�1 ¼ walkingÞ ¼ 1� PðMt ¼ standingjMt�1 ¼ walkingÞ � PðMt ¼ runningjMt�1 ¼ walkingÞ ð14Þ
3.3.3. Dynamics model
We decompose the dynamics model into three subsets as follows:
PðSpt ;Drt; PtjSpt�1;Drt�1; Pt�1; St ;Dt ;MtÞ ¼ PðSptjSpt�1; St ;Dt;Mt ; Pt�1ÞPðDrt jDrt�1;MtÞPðPtjPt�1; Spt;DrtÞ ð15Þ

We assume that the pedestrian speed is determined in accordance with two factors and further decompose the first term

of the right side of (15) into two subsets:
PðSpt jSpt�1; St ;Dt;Mt ; Pt�1Þ / PðSptjSpt�1;MtÞPðSpt jSt;Dt ;Mt; Pt�1Þ ð16Þ

We assume that the moving speed is constant though it is allowed to gradually change with Gaussian process noises mt

(Constant-Speed model). This corresponds to the first terms of the right side of (16).
SptjMt¼mt
¼ Spt�1 þ mt ðmt ¼ walking; runningÞ

0 ðmt ¼ standingÞ

�
ð17Þ

mt � N 0;r2
s;mt

� �

Besides the Constant-Speed model, we also consider a probable speed distribution to each situation and pedestrian

behavior. This corresponds to the second term of (16) and we name it the Context-Speed model. For the speed distribution
model where Mt ¼ walking; running, we employ the gamma distribution with moving parameters as previously proposed
(Iryo-Asano et al., 2015).
PðSpt jSt ¼ st ;Dt ¼ dt ;Mt ¼ mt; Pt�1 ¼ pt�1Þ � GammaðSpt ; kðst ;dt ;mt ;pt�1Þ; hðst; dt ;mt;pt�1ÞÞ ð18Þ

The probability density function of gamma distribution is defined using the gamma function CðkÞ:
f ðx; k; hÞ ¼ xk�1 expð�x=hÞ
hkCðkÞ ð19Þ
The gamma distribution varies its skewness with the shape/scale parameter k; h. In this Context-Speed model, the shape/
scale parameters are determined by linear functions of explanatory variables. We consider the distance to the crosswalk at
the previous time as the explanatory variables and the linear functions replaces the coefficient and the constant on every
combination of the other conditional states: St ; Dt ; Mt in a similar way to the Motion Transition Model.
kðst ;dt;mt;pt�1Þ ¼ a0;st ;dt ;mt þ a1;st ;dt ;mt Lðpt�1Þ ð20Þ
hðst ;dt ;mt ;pt�1Þ ¼ b0;st ;dt ;mt

þ b1;st ;dt ;mt
Lðpt�1Þ ð21Þ
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These parameters are determined by maximum likelihood estimation. When Mt ¼ standing, the speed value is fixed to
zero.

As in (16) the probability density of the proposed speed distribution is proportional to the product of the density of the
normal and gamma distribution. Combining the conditional states as Ct ¼ fSpt�1; St ; Dt ; Mt; Pt�1g and defining the proba-
bility density function (PDF) of the gamma distribution in Context-Speed model as GcxðSpjCtÞ and the PDF of the normal dis-
tribution in Constant-Speed model as NcsðSpjCtÞ, (16) is written as follows:
PðSptjCtÞ ¼ NcsðSpt jCtÞGcxðSpt jCtÞR
NcsðSpjCtÞGcxðSpjCtÞdSp ð22Þ
We also assume the moving direction of the pedestrian movement Drt is constant though it is allowed to gradually
change with Gaussian process noises �t (Constant-Direction model).
DrtjMt¼mt ¼ Drt�1 þ �t; �t � N 0;r2
d;mt

� �
ð23Þ
Finally, the position Pt is uniquely fixed by shifting the position at the previous time Pt�1 with the speed Spt and direction
Drt .
Pt ¼ Pt�1 þ Spt

cosðDrtÞ
sinðDrtÞ

� �
ð24Þ
3.3.4. Observation model
We assume pedestrian positions are measured with zero-mean Gaussian errors as follow:
Zt ¼ Pt þwt ; wt � N 0;r2
m

1 0
0 1

� �� �
ð25Þ
3.4. Inference

To estimate the pedestrian state including the decision and motion type, we apply the Bayesian filtering to the DBN
defined above with the state transition model (Section 3.3.1, 3.3.2, 3.3.3) and the observation model (Section 3.3.4). How-
ever, since the proposed state transition model includes discrete/continuous state and non-Gaussian conditional probability
distributions, the integral part in (2) is intractable. Therefore, we employ a sample-based method, the particle filter (PF)
(Doucet et al., 2000).

The PF approximates the posterior probability by numerous weighted samples called particles. Each particle has values in
the state space and a weight called importance weight. The general PF algorithm is divided into three steps: sampling,
importance sampling and re-sampling steps.

In the sampling step which corresponds to the prediction, each particle moves in its state space according to its previous
state and the proposed transition model. Note that if it is hard to get samples from the transition model Pðxt jxt�1Þ, we can
exploit another distribution qðxt jx0:t�1; o0:tÞ for the sampling. It is called proposal distribution. In our model, at each time
step, the new decision value of each particle is sampled at first with the present signal phase, the previous decision/position
and the conditional probability defined in Section 3.3.1. Similarly, its new motion type is determined following Section 3.3.2
after fixing the decision. Then, the speed, direction and position are provided by the models defined in Section 3.3.3. How-
ever, since we cannot easily get samples from the rather complicated speed model of (22), we approximate the gamma dis-
tribution of Context-Speed model GcxðSpjCtÞ by a normal distribution (PDF: NcxðSpjCtÞ) having the same mean and variance
values. Using the parameters k; h of the original gamma distribution, the mean and variance parameters of the normal dis-
tribution are set to kh and kh2 respectively. Since the product of two normal distribution is a normal distribution again (26),
we can get samples from it.
u � Nðlu;ruÞ; v � Nðlv ;rvÞ

uv � N
lur2

v þ lvr2
u

r2
u þ r2

v
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ur2
v

r2
u þ r2

v

s !
ð26Þ
In the importance sampling step which corresponds to the correction, the importance weight of the i-th particle wðiÞ is
generally updated as follows by using the symbols in Section 3.1:
wðiÞ
t ¼ wðiÞ

t�1
Pðot jxðiÞt ÞPðxðiÞ

t jxðiÞt�1Þ
qðxðiÞt jxðiÞ0:t�1;o0:tÞ

ð27Þ
In our model, since the difference between the transition model and the proposal distribution exists in the speed distri-
bution model, (27) can be written as the following.



Table 1
Specific

Cam
O
Fo
R
F

Atta

172 Y. Hashimoto et al. / Transportation Research Part C 71 (2016) 164–181
wðiÞ
t ¼ wðiÞ

t�1PðZtjPðiÞ
t Þ

NcsðSpðiÞt jCðiÞ
t ÞGcxðSpðiÞt jCðiÞ

t ÞR
NcsðSpjCðiÞ

t ÞGcxðSpjCðiÞ
t ÞdSp

NcsðSpðiÞt jCðiÞ
t ÞNcxðSpðiÞt jCðiÞ

t ÞR
NcsðSpjCðiÞ

t ÞNcxðSpjCðiÞ
t ÞdSp

ð28Þ
Now, we assume the skewness of Gcx is small and the variance of Ncs is large. In that case, the lower integral approximates
the upper one, and then the equation can be written as follows:
wðiÞ
t � wðiÞ

t�1PðZtjPðiÞ
t Þ GcxðSpðiÞ

t jCðiÞ
t Þ

NcxðSpðiÞ
t jCðiÞ

t Þ
ð29Þ
In order to avoid the situation that all importance weights except a few ones are close to zero, the re-sampling step is
conducted when the variance of the importance weights becomes small. In this step, particles are reproduced/discarded
so that the number distribution of particles will be proportional to the importance weight distribution before the procedure.
Afterwards, all particles are assigned the same importance weights.
4. Experiments

4.1. Dataset description

In order to train and evaluate the proposed DBN and filtering method, pedestrian data in real traffic scenes were collected
from a vehicle. We drove around a certain intersection and passed through a specific crosswalk with left-turning several
times. Three monocular cameras were mounted on the car. The camera specifications and experimental setting are shown
in Table 1 and Fig. 4. The one on the left side view mirror captured the near-side sidewalk and pedestrians, the other ones
were used for obtaining signal phases. At the crosswalk, the duration of PG and PFG was always 35, 10 s, respectively. In this
paper, we focus on near-side pedestrians who walk towards the crosswalk which the ego-vehicle is going to pass by left-
turning. The dataset contains 289 sequences of uninstructed pedestrians.

Pedestrian grounding points and motion types, the edge line of the crosswalk and traffic signal phases are manually
labeled. An example of the labeling is shown in Fig. 5. Since we cannot know the true pedestrian intention at each time step,
the decision values are labeled as wait only after the onset of PFG for the pedestrian who did not cross according to the
assumption mentioned in Section 3.3.1. Pedestrian and crosswalk edge positions are projected to 2D ground based on cam-
era parameters and the assumption of a flat road. By converting the coordinate, pedestrian trajectories relative to the cross-
walk edge are obtained. We apply Kalman smoother to each trajectory and regard it as the ground truth trajectory.

We divide the sequences into two scenarios: the cross- and wait-scenarios. A cross-scenario includes a pedestrian who
goes through the crosswalk (a cross-pedestrian), and a wait-scenario is corresponding to a pedestrian who stops in front
of the crosswalk (a wait-pedestrian). The numbers of cross-pedestrians and wait-pedestrians are shown in Table 2. The num-
bers of sequences with only walking or running and with motion transitions are also shown in Table 2. As shown in Table 2,
while there are 251 cross-pedestrians in our database, only 38 wait-pedestrians were collected. It is because the data were
collected from the moving vehicle. When the pedestrian shows the waiting behavior, the signal phase is the PFG or PR, our
vehicle cannot be at a stop and has to move. The short observation time causes the small number of wait-pedestrian data. On
the contrary, it is easy to collect more data of cross-scenarios, because our vehicle can slowly move or stop, when pedestrians
cross the road. All the obtained ground-truth trajectories of cross-scenarios and wait-scenarios are shown separately in
Fig. 6. As can be seen in Fig. 6(a), the distribution of trajectories of cross-pedestrians is very diverse. The pedestrians come
from different directions, and turn-cross or straightly cross road. This diverse data benefits the generation of a stable model.
In addition, though the number of wait-pedestrians is less than the number of cross-pedestrians, the trajectory distribution
also shows the different cases.

Although each particle makes a decision to cross or wait at the onset of PFG according to the logistic regression (9) in our
system, our dataset contains sequences in which pedestrians enter the visual field after the onset of PFG (18 cross-
pedestrians and 31 wait-pedestrians). In this case, each particle is assigned a decision in the same way as mentioned in Sec-
tion 3.3.1 using the measured position Z0 instead of the hidden position X0 at the entering moment, namely the initial frame.
Though the decision obviously depends on the time elapsed from the onset of PFG at the entering moment, further analysis
ations of cameras and experimental setting.

era model Point gray FL2G-13S2C-C
ptical lens Kowa C-Mount 3.5 mm f/1.4
cal length 3.5 mm
esolution 1024 � 768 pixel
rame rate 13 fps
ched position Windshield, left/right side view mirror
Vehicle Toyota NOAH



Fig. 4. Positions of attached cameras.
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considering time is our future work. The mean and STD value of the distance to the crosswalk of the initial frame are 7.59 and
2.01 m respectively, and those of the last frame are �0.23 and 2.21 m.

4.2. Training & test

We evaluate the performance of the proposed system to estimate the pedestrian states. We use 4-fold cross-validation to
divide the dataset into training and test sequences. The parameters in the proposed model are determined by applying the
maximum likelihood estimation to the training sub-datasets. As examples, the trained models are visualized in Fig. 7. We can
see the pedestrian tendencies are reproduced. For example, pedestrians usually stop around 2–6 m in front of the crosswalk
(the cyan line in Fig. 7(b)). As mentioned in Section 2, a pedestrian who decides to cross the road has a slightly faster speed
during PFG than the speed during PG (the blue and green lines in Fig. 7(c)). In addition, wait-pedestrians decelerate as they
approach the crosswalk (the red and cyan lines in Fig. 7(c)). Note that, only for the parameters qw!c; qc!w in (9), we deter-
mine small constants empirically because we cannot know the true moments of decision changing during PFG and assume
that it happens at low probability. Though the probabilities might be changed according to the contexts such as the existence
of turning vehicles, it is our future work. In this paper, we do not discuss the third rule in Section 3.3 and ‘‘decision-making”
indicates only the second one.

As the inputs to the proposed system, we simulated the observations of pedestrian positions bZ by adding Gaussian noises
ŵ to the ground truth positions P through the same formulation as (25):
Fig. 5.
crosswa
this figu
bZt ¼ Pt þ ŵt ; ŵt � N 0;r2
n

1 0
0 1

� �� �
ð30Þ
where the magnitude of observation error jbZ � Pj follows Rayleigh distribution (chi distribution with 2 degrees of freedom)
and its mean and variance are rn

ffiffiffip
2

p
;r2

n 2� p
2


 �
, respectively. Supposing practical application of the proposed model to
Image example of the manual labeling. The red points are the labeled grounding points of the pedestrians. The green line is the edge line of the
lk. The pedestrian motion type and signal phase (with the other cameras) are also labeled manually. (For interpretation of the references to color in
re legend, the reader is referred to the web version of this article.)



Table 2
The numbers of sequences categorized by scenarios and motion types.

Total Crossing Waiting Walking only Running only Walking? standing Walking? standing Running? standing

289 251 38 182 29 33 26 26

Fig. 6. Ground-truth trajectories of (a) cross-scenarios and (b) wait-scenarios. Yellow rectangles represent the areas where pedestrian cannot walk in due to
the design of road structure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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various safety systems, we evaluate noise tolerance of the system based on different levels of the noise: rn ¼ 0:1;0:4;1:0 m.
Note that the simulated noises are rather large in comparison to the pedestrian dynamics where the average walking dis-
tance per frame is 0.1 m in our dataset. We regard rn as a known value and rm in (25) is set to the same value.

For the particle filtering, we empirically used 2000 particles for each pedestrian. Currently, the algorithm is implemented
with a single thread. The computational efficiency was evaluated in a laptop computer with a 2.4-GHz central processing
unit. Averagely, the developed algorithm spends 5.1 s to process 1.0 s data of each pedestrian (1.0 s data includes 13 frames).
Considering the structure of particle filter algorithm, we could use multiple threads and parallel processing to improve the
computational efficiency. We believe that our system is applicable to practical use.
4.3. Case studies

In this section, we show two sequences with the position observations simulated with different variance levels and how
the proposed system behaves towards them.
4.3.1. Rushing case
Fig. 8 shows the estimation results for a cross-scenario. Noticing the signal start to flash, a pedestrian decided to cross the

crosswalk and began to run. In the left column, the simulated trajectory by each noise variance level is plotted as a green line.
As can be seen from Fig. 8(a)(left), the simulated trajectory is very close to the ground truth. In this condition, the system can
make the most of the positional information to estimate the other states. On the other hand, in Fig. 8(c)(left), the raw obser-
vation trajectory is so complicated that it seems hard to identify the pedestrian states. In this case, the observation likelihood

model P Zt jPðiÞ
t

� �
in (29) becomes a flatter PDF and reduces its influence in weighting particles. It means that the system esti-

mates the pedestrian states relying on the prior knowledge of how a pedestrian behaves in the contexts except positional
information.

The left column figures also illustrate the trajectories obtained from weighted averages of particles in our DBN + PF-based
system. In addition, comparisons between the observation and filtering errors are shown in the middle column figures. Note
that we set the origin of the horizontal axis to the onset of PFG. From these figures, we can see the system smooths the noisy
observation trajectories and provides accurate positions.
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Fig. 7. Visualization of the trained models. (a) Wait decision probability at the onset of PFG in (9). (b) Motion transition probabilities in (12). Legends
represent St ; Dt ; Mt�1 and Mt , respectively. (c) Probability density functions of speed conditioned on the contexts in (18). Legends represent St ; Dt ; Mt and
ðdistance to crosswalkÞt�1, respectively.
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The right column figures show the posterior probabilities for each decision/motion type value. From the figures, we can
find that the estimated cross probability is almost always higher than 90% after the decision-making. The system is confident
that the pedestrian will cross the crosswalk from the onset of PFG. The figures also show that the system reacts to the pedes-
trian running. However, the reaction is delayed as the observation noises become larger. Although high-speed movement is
the main clue for detecting the running motion, the highly scattered observations make it hard for the system to find speed-
ing up.

4.3.2. Stopping case
Fig. 9 shows the estimation results for a wait-scenario. Noticing the signal start to flash, a pedestrian decided to wait for

next PG and stopped in front of the crosswalk. The matrix of figures is constituted in the same way as (8).
Though the proposed system sometimes outputs worse position than the observation especially around 0 s, it still

smooths the noisy position observation in the same way as the previous scenario. The inaccurate positioning results are
caused by the pedestrian turning since we assume that pedestrians basically walk straight as defined by (23).

The posterior transitions of the right row figures show that the system quickly recognizes that the pedestrian will not
cross. We can also see that the larger the noises are, the later the estimated decision is switched to wait. The large noises
bring about recognition delay.

Contrary to the decision estimation, the larger the noises are, the earlier the estimated motion type is switched to stand-
ing. It seems that the faster detection of pedestrian stop is better. However, standing in our model means that a pedestrian is
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Fig. 8. Filtering results for the different simulated noise variances rn in a cross-scenario. (left) Trajectories of ground truth/simulated observation/
estimation result. (middle) Positioning errors of simulated observation/estimated result. (right) Estimated probabilities of each decision and motion type.
The white/red points in the left column figure and the gray/red dashed lines in the middle and right column figures represent the onset of PFG/the moment
the pedestrian began running, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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not moving. It is different from the stopping state which is used in motion classification researches such as (Keller and
Gavrila, 2014; Quintero et al., 2014a). The stopping represents the decelerating motion of transition from normal walking
to stop. Therefore, if standing is recognized before the actual stop, it means incorrect. We can say the large noises also dete-
riorate the estimation of motion type.

4.4. Evaluation on state estimation

In this section, we evaluate the performance of the proposed algorithm based on multiple data. The recognition of deci-
sion and motion type are demonstrated by using confusion matrices in Tables 3 and 4, respectively. The decision and motion



−2 −1 0 1 2 3 4 5 6 7

time from onset of PFG [s]
−2 −1 0 1 2 3 4 5 6 7

time from onset of PFG [s]

−2 −1 0 1 2 3 4 5 6 7

time from onset of PFG [s]

−2 −1 0 1 2 3 4 5 6 7

time from onset of PFG [s]
−2 −1 0 1 2 3 4 5 6 7

time from onset of PFG [s]

−2 −1 0 1 2 3 4 5 6 7

time from onset of PFG [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

po
si

ti
on

in
g

er
ro

r
[m

] observation
DBN+PF

0.0

0.2

0.4

0.6

0.8

1.0

es
ti

m
at

ed
pr

ob
ab

ili
ty

0.0

0.2

0.4

0.6

0.8

1.0

es
ti

m
at

ed
pr

ob
ab

ili
ty

0.0

0.2

0.4

0.6

0.8

1.0

es
ti

m
at

ed
pr

ob
ab

ili
ty

cross
wait
standing
walking
running

(a) σn = 0.1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

po
si

ti
on

in
g

er
ro

r
[m

] observation
DBN+PF cross

wait
standing
walking
running

(b) σn = 0.4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

po
si

ti
on

in
g

er
ro

r
[m

] observation
DBN+PF cross

wait
standing
walking
running

(c) σn = 1.0

Fig. 9. Filtering results for the different simulated noise variances rn in a wait-scenario. (left) Trajectories of ground truth/simulated observation/
estimation result. (middle) Positioning errors of simulated observation/estimated result. (right) Estimated probabilities of each decision and motion type.
The white/blue points in the left column figure and the gray/blue dashed lines in the middle and right column figures represent the onset of PFG/the
moment the pedestrian stopped, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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is determined as the state which has the maximum summation of particle weight. The results in the tables are directly aver-
aged over all frames of all tracks. Precision values in the tables represent the probabilities that decision/motion type recog-
nized as X at a time step is actually X. In addition, the positioning error is shown in Table 5 as well.

As shown in Table 3, the recognition rates for both cross and wait decisions are higher than 86% in all the levels of the
measurement noise. The experimental results also indicate that the True Positive Rate of cross decision is higher than the
Table 3
Normalized confusion matrices of decision recognition for the different simulated noise levels.

rnðmÞ
0.1 0.4 1.0

Estimated Estimated Estimated

Cross Wait Cross Wait Cross Wait

Actual Cross 0.98 0.02 0.98 0.02 0.97 0.03
Wait 0.11 0.89 0.14 0.86 0.14 0.86

Precision 0.98 0.92 0.97 0.91 0.97 0.87



Table 4
Normalized confusion matrices of motion recognition for the different simulated noise levels.

rnðmÞ
0.1 0.4 1.0

Estimated Estimated Estimated

Standing Walking Running Standing Walking Running Standing Walking Running

Actual Standing 0.94 0.06 0.00 0.88 0.12 0.00 0.81 0.18 0.00
Walking 0.01 0.90 0.09 0.02 0.90 0.08 0.02 0.91 0.07
Running 0.00 0.44 0.56 0.00 0.51 0.48 0.01 0.65 0.35

Precision 0.84 0.93 0.48 0.77 0.91 0.48 0.76 0.89 0.43
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one of wait decision, which are 98% and 89% respectively in the case of rn ¼ 0:1 m. The reason is the proposed system has a
unique decision in the PG time, and recognizes the intention as cross. The recognition results are the same as the ground
truth of the pedestrian decision in our database during the PG time. It is important to note that pedestrians always have
a cross intention in the PG time, which is a natural assumption based on the experience in the real world. Further evaluation
is conducted by analyzing the recognition rates in the period of PFG, which is discussed in Section 4.5.

The motion recognition performance of the proposed system is shown in Table 4. A recognition rate of 90% is maintained
for walking motion in different levels of noises. The recognition rate for standing motion decreases with the increase of the
noise level. The large observation noises raise the uncertainty of the observed movement, which makes it difficult to judge
whether the pedestrian is moving or not. Table 4 also shows that running motion is difficult to be distinguished from the
walking motion. In our proposed model, the pedestrian speed is the main clue for estimating the motion type. However,
the speed distributions of walking and running overlap each other as we can see in Fig. 7(c), and the input information is
not enough to classify them. In the view of the practical system, the running behavior is the most dangerous for the driver
and ADASs. There is room for improvement in the proposed algorithm. In addition to speed measurements, the walking and
running motions show the difference on the appearance of pedestrian as well. The difference of the two motions has been
discussed based on temporal feature in images (Ismail and Tahir, 2013; Arunnehru and Geetha, 2013). Integration of these
information with our proposed system could improve the recognition performance. Moreover, Table 4 indicates that large
measurement errors decrease the capability of the proposed system to detect deceleration/acceleration in stopping/running
progresses, thus, degrades the motion recognition performance.

Table 5 provides the statistic evaluation of the positioning results of our DBN + PF-based system. The mean and standard
deviation prove that the proposed method can reduce the positioning errors coming from the measurements, especially for
the largest noise case (rn ¼ 1:0 m). At the same time, we can observe that the positioning errors in wait-scenarios are smal-
ler than the one in cross-scenarios. The reason can be explained by referring to the trajectories of the pedestrians in the two
scenarios. As shown in Fig. 6(a), cross-scenarios contain many curving trajectories. As we discussed in Section 4.3.2, a pedes-
trian suddenly turns, which brings difficulty in position estimation due to the assumption of Constant-Direction model in
(23). In addition, wait-scenarios contain a standing period. When a pedestrian becomes standing, the detection of standing
will constrain the movement of the pedestrian, which reduces the impact of larger positioning error compared to the cross-
scenarios.

4.5. Evaluation on crossing decision recognition

In this section, we focus on the evaluation of the decision recognition during the PFG period. The reason we especially
evaluate the PFG period is that pedestrians usually make decisions or change behavior during the PFG, and these information
need to be recognized.

The pedestrian sequences are aligned along the time axis, whose origin is defined as the decision-making moment in our
system. Here, we define the time elapsed from the decision-making moment as time-from-decision (TFD). As mentioned in
Section 4.1, there are two kinds of sequences in our dataset. The first one includes the pedestrians who had been in the cam-
era before the onset of PFG. In this case, TFD represents the time from the onset of PFG. The second one corresponds to pedes-
trians who entered the view of the camera after the onset of PFG, where the TFD represents the time from the entering
moments.
Table 5
Mean/STD value (m) of positioning errors for the different simulated noise levels.

rnðmÞ
0.1 0.4 1.0

Cross 0.08/ 0.07 0.25/ 0.18 0.49/ 0.32
Wait 0.07/ 0.06 0.19/ 0.13 0.39/ 0.23
All 0.08/ 0.07 0.24/ 0.17 0.47/ 0.31
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Table 6 shows confusion matrices according to different TFD moments and noise levels of the simulated observations. It
consists of 15 3-row � 2-column sub-matrices, and each of them represents a normalized confusion matrix under the joint
condition of one TFD moment and one noise level. The experiment results demonstrate that the proposed system achieves
more than 85% accuracy to recognize cross decision after 2 s observation. On the other hand, the recognition accuracy forwait
decision is almost always worse than that for cross decision, and it takes 3–4 s to obtain an accuracy of 85%. Based on the
analysis for Table 6, three tendencies can be concluded:

1. It takes longer time to perceive wait decision than cross decision.
2. The longer TFD the system has, the more accurately it recognizes cross or wait decisions.
3. The larger the errors the observations contain, the lower the accuracy the system obtains in the recognition of the

decisions.

The conceptual reasoning for these three conclusions can be explained as follows.
The reason for the first tendency is that when a pedestrian makes a decision to wait, he or she does not always start to

decelerate just after the decision-making. Since the low speed indicated from the deceleration to stop is the main clue for
distinguishing wait decision from the cross one, the system maintains the possibility of cross decision until the deceleration
occurs. In addition, this result also implies that some pedestrians make or change the decisions after the onset of PFG, and
then they shift their behavior for stop. In that case, the system cannot provide wait decision before the decision-making or
changing.

The same reason also can be used to explain the second tendency. In addition to that, observation for a longer period of
time could provide more information of the pedestrian state. Therefore, it enables the filtering method to extract the accu-
rate state, and enhance the performance of the proposed system. The reason of the third tendency is that large errors make it
difficult to estimate the correct speed of pedestrians. The system utilizes the pedestrian speed to distinguish cross and wait
decisions. However, large errors confuse the system and lead to the decrease of the recognition accuracy.

In order to demonstrate the effectiveness of our proposed method, we additionally conducted the comparison experi-
ment. In the comparison, the baseline method is model previously proposed by Iryo-Asano et al. (2015), because this work
also focuses on signalized intersections. This model employs logistic regression to represent the probability of the crossing
decisions in the same way as (9)(b) and (11), and this model has two explanatory variables, one is the distance from a pedes-
trian to the crosswalk, and the other is the traveling speed at the onset of PFG besides. Though the work also considers the
crosswalk length as one of explanatory variables, we omitted it because the experiment was conducted at a single crosswalk.
We applied this model to the sequences in which the pedestrians are in the visual field at the onset of PFG and regenerated
the parameters using our experiment data. The value of the state variables at the onset of PFG were input to the model.
Table 7 shows the confusion matrix of the decision recognition results by this previous model on our data at the onset of PFG.

The previous model classifies the crossing decision from the pedestrian state at the onset of PFG. Therefore, we firstly
compare the correct recognition rate in Table 6 (diagonal elements in confusion matrix) with the case of TFD = 0.0 s and
Table 7. Our proposed method is worse than the baseline method at the moment of the onset of PFG. However, our proposed
system considers the different cases (moments after the onset of PFG), and continuously performs state estimation. As
shown in Table 6, the performance of our system was improved with the increase of time. We can conclude that, after
2.0 s of TFD, the correctness of the estimation from our proposed model is higher than the one from the previous model,
especially for the recognition of waiting behaviors.

These results were caused by two kinds of pedestrians: one is that the pedestrians begin to hurry when they notice the
signal starting to flash, the other is that the pedestrians give up crossing evaluating the traffic conditions after the onset of
PFG. Since highly dynamic changing of pedestrian behaviors at intersection, it is difficult to distinguish the crossing decisions
Table 6
Normalized confusion matrices of decision recognition during PFG period for the different simulated noise levels.

rn (m) TFD (s)

0.0 1.0 2.0 3.0 4.0
Estimated Estimated Estimated Estimated Estimated

Cross Wait Cross Wait Cross Wait Cross Wait Cross Wait

0.1 Actual Cross 0.75 0.25 0.91 0.09 0.89 0.11 0.85 0.15 0.96 0.04
Wait 0.39 0.61 0.34 0.66 0.18 0.82 0.00 1.00 0.03 0.97

Precision 0.77 0.59 0.79 0.83 0.85 0.86 1.00 0.88 0.96 0.97

0.4 Actual Cross 0.77 0.23 0.80 0.20 0.93 0.07 0.97 0.03 1.00 0.00
Wait 0.39 0.61 0.29 0.71 0.29 0.71 0.21 0.79 0.03 0.97

Precision 0.77 0.61 0.80 0.71 0.80 0.90 0.80 0.97 0.96 1.00

1.0 Actual Cross 0.78 0.22 0.65 0.35 0.87 0.13 0.91 0.09 0.88 0.12
Wait 0.39 0.61 0.26 0.74 0.26 0.74 0.13 0.87 0.05 0.95

Precision 0.77 0.62 0.78 0.60 0.80 0.82 0.86 0.92 0.91 0.92



Table 7
Normalized confusion matrices of decision recognition at the onset of PFG by Iryo’s model.

Estimated

Cross Wait

Actual Cross 0.78 0.22
Wait 0.29 0.71

Precision 0.94 0.36
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using the pedestrian states only at the onset of PFG in the previous model. Our proposed system continuously observes the
pedestrian behaviors and overcomes the difficulty caused by highly dynamic changing. In addition, there are some pedestri-
ans who entered the view of the on-board camera after the onset of PFG as mentioned above. This is also a challenge for the
previous method, our proposed system could solve this difficulty as well.
5. Conclusion & future work

In this paper, we presented a probabilistic model of pedestrian behavior at signalized intersections. The model is con-
structed using the Dynamical Bayesian Network by imitating the way pedestrians assess the situations and decide their
behavior in real traffic scenes. It describes the stochastic connections among external contexts, pedestrian behavior and
physical movement. In the inference step, the model estimates their states jointly by exploiting the particle filter.

We conducted experiment using pedestrian data in real traffic scenes and evaluated the system performance. In the eval-
uation, the system utilized signal phases and pedestrian positions with various simulated measurement noises on the
assumption of connected vehicles. Though the large errors cause lower accuracy and reaction delay, the proposed system
correctly recognizes the decision to cross the crosswalk with 2 s of observation and the decision to wait for the next PF period
with 3–4 s of observation in every noise case. At the same time, we demonstrated the capability of the system to classify the
pedestrian motion and estimate the true pedestrian position from the noisy measurements.

The results showed that the contextual information which is not easy for a stand-alone on-board system to obtain is cru-
cial for advanced vehicle safety systems. The proposed model can find rushing pedestrians who might be in a turning driver’s
blind spots. This capability can also help drivers to reduce unnecessary waiting for pedestrians whomight have already given
up crossing. Unlike discriminative models which classify binarily, this stochastic model provides probabilities of the system
states as confidence. At the same time, it can take noises into account. These properties make it possible for a vehicle system
to behave variously, not limited only to go or stop, according to the probabilities. Especially in the context of autonomous
driving, it is helpful to have vehicles behave naturally like a human and prevent undesirable excessive braking.

In this paper, we assumed a strong statement that pedestrians make decisions to cross or wait at the onset of PFG. Unfor-
tunately, it is not always true. Pedestrians sometimes change their decisions and behavior according to the traffic situation
such as the existence and positions of turning vehicles. For more exact modeling, an analysis that takes additional contexts
into account should be conducted.

We regarded the crossing decision as critical information because it determines pedestrian behavior over a long period
while motion classification by the previous works (e.g. walking or stopping) can give only short time prediction. Therefore,
we emphasized the evaluation on decision recognition. However, in order to show the advantage of recognizing the decision
over previous works, path prediction is required. The reason why we avoided predicting paths is that our model can predict
only straight trajectories while our dataset contains curved trajectories. However, as we can see in Fig. 6, the turn mainly
occurred at a specific area (x ¼ ð�2m;2mÞ; y ¼ ð�6m;� 2mÞ). Based on this tendency, we are planning to learn the turning
motion as a spatial feature and achieve path prediction.
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